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A Theory of Atomic Transactions

Nancy Lynch, M.I.T.
Michael Merritt, AT&T Bell Labs

William Weihl, M.I.T.
Alan Fekete, M.I.T.

May 30,19881
i.

Abstract:

This paper describes some results of a recent project to develop a theory for reasoning about atomic transactions.
This theory allows careful statement of the correctness conditions to be satisfied by transaction-processing
algorithms, as well as clear and concise description of such algorithms. It also serves as a framework for rigorous
correctness proofs.

I Introduction
The notion of "atomic transaction", originally introduced for databases, is now used in programming systems for

general (data-oriented) distributed computing such as Argus [Liskov] and Camelot [SS]. Roughly speaking, a
transaction is a sequence of accesses to data objects; it should execute "as if" it ran with no interruption by other
transactions. Moreover, a transaction can complete either successfully or unsuccessfully, by "committing" or
"aborting". If it commits, any alterations it makes to the database should be lasting; if it aborts, it should be "as if' it
never altered the database at all. The execution of a set of transactions should be "serializable", that is, equivalent to
an execution in which no transactions run concurrently and in which all accesses of committed transactions, but no
accesses of aborted transactions, are performed. Another condition often considered is "external consistency",
which asserts that the order of transactions in the equivalent serial execution should be compatible with the order in
which transaction invocations and responses occur.

In order for transactions to be useful for general distributed programming, the notion needs to be extended to
include nesting. Thus, in addition to accesses, a transaction can also contain subtransactions. The transaction
nesting structure can be described by a forest, with the top-level transactions at the roots and the accesses to data at
the leaves. The semantics of nested transactions generalize those of ordinary transactions as follows. Each set of
sibling transactions or subtransactions is supposed to execute serializably. As for top-level transactions,
subtransactions can commit or abort. Each set of sibling transactions runs as if all the transactions that committed
ran in serial order, and all the transactions that aborted did not run at all. An external consistency property is also
required for each set of siblings.

Nested transactions provide a very flexible programming mechanism. They allow the programmer to describe 9
more concurrency than would be allowed by single-level transactions, by having transactions request the creation of
concurrent subtrmnsactions. They also a_!"w localized handling of transaction failures. When a subtransaction

commits or aborts, the commit or abort is reported to its parent transaction. The parent can then decide on its next -,

'he work of the first author (and through her. the work of the fourth author) was supported in part be the office of Naval Research under
Contract N00014-85-K-0168, by the National Science Foundation under Grant CCR-8611442, and by the Defense Advanced Research Projects
Agency (DARPA) under Contract N014-83-K-0125. The work of the third author was supported in pat by the National Science Foundation
under Grant CCR-8716884, and by the Defense Advanced Research Projects Agency (DARPA) under Contract N00014-83-K-0125.
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action based on the reported results. For example, if a subtransaction aborts, its parent can use the reported abort to
trigger another subtransaction, one that implements some alternative action. A good mechanism for handling
failures is especially important in distributed systems, where failures are common because of the unreliability of
communication.

The idea of nested transactions seems to have originated in the "spheres of control" work of [Davies]. Reed
[Reed] developed the current notion of nesting and designed a timestamp-based implementation. Moss [Moss] later

designed a locking implementation that serves as the basis of the implementation of the Argus programming
language.

There are two reasons why a formal model is needed for reasoning about atomic transactions. First, the
implementors of languages that contain transactions need a model in order to reason about the correctness of their
implementations. Some of the algorithms that have been proposed for implementing transactions are complicated,
and informal arguments about their correctness are unsatisfying. In fact, it is not even obvious how to state the
precise correctness conditions to be satisfied by the implementations; a model is needed for describing the semantics
of transactions carefully and formally. Second, if programming languages containing transactions become popular,
users of these languages will need a model to help them reason about the behavior of their programs.

There has been considerable prior work on a theory for atomic transactions, described, for example, in [BHG].
This "classical" theory is primarily applicable to single-level transactions, rather than nested transactions. It treats
both concurrency control and recovery algorithms, although the treatments of the two kinds of algorithms are not
completely integrated. The theory assumes a system organization in which accesses are passed from the transactions
to a "scheduler", which determines the order in which they are to be performed by the database. The database
handles recovery from transaction abort and media failure, so that each access to one data object is performed in the
state resulting from all previous non-aborted accesses to that object The notion of "serializability" in this theory
corresponds to "looking like a serial execution, from the point of view of the database". Proofs for some algorithms
are presented, primarily based on one main combinatorial theorem, the "Serializability Theorem". This important
theorem states that serializability is equivalent to the absence of cycles in a certain graph representing dependencies
among transactions.

There are some limitations of this prior work. First, the notion of correctness is quite restrictive, stated as it is in
terms of the object boundary in a particular system organization. The object interface that is described is suitable for
single-version locking and timestamp algorithms (in the absence of transaction aborts), but it is much less
appropriate for other kinds of algorithms. Multi-version algorithms and replicated data algorithms, for example,
maintain object information in a form that is very different from the (single-copy latest-value) form used for the
simple algorithms, and the appropriate object interface is also very different. The correctness conditions presented
for the simple algorithms in [BHG] thus do not apply without change to these other kinds of algorithms. It seems
more appropriate, and useful in not unduly restricting possible implementations, to state correctness conditions at
the user interface to the system, rather than the object boundary.

Second, the transactions are not modelled explicitly in the earlier work, but rather implicitly, in terms of axioms
about their executions. It is sometimes interesting to reason about the control within a transaction, e.g., to describe
how the same transaction would behave when it is placed in different systems. Such reasoning is facilitated by an
explicit model which clarifies which actions occur under the transaction's control, and which are due to activity of
the environment. Furthermore, it will turn out that the "user interface" mentioned above can be modelled by the
boundary between the transactions and the rest of the system; in order to state correctness conditions at this
boundary, it is useful to have an explicit model for the transactions.

p -----------
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Third, the prior model does not seem to extend well to treat nested transactions. This seems to be primarily
because not everything that needs to be described is modelled explicitly. For example, a subtransaction may have
been created only because an earlier attempt aborted, so we must model the abort explicitly to capture this
dependence.

Our model remedies the deficiencies described above for the earlier model. This improvement does not come for
free: our model contains more detail than the earlier model, and may therefore seem more complicated. It seems to
us, however, that this extra detail is necessary. In fact, we believe that the extra detail is useful for understanding
not just nested transactions, but also ordinary single-level transactions.

We have already used our theory to present and prove correctness of many transaction-processing algorithms,
including locking and timestamp-based algorithms for concurrency control, algorithms for managing replicated data
and algorithms for managing "orphan" transactions. This work has been presented in research papers
[LM, FLMW1, FLMW2, HLMW, GL, AFLMW, Peril, and we are currently writing a book [LMWF] to unify all
the work. There is still much that remains te be done, in particular in modelling the very interesting and complex
algorithms that have been developed to implement transactions in the presence of crashes that destroy volatile
memory.

In this paper, we present some of the basic results of our theory and attempt to compare them to the corresponding
results of the classical theory. In particular, we describe the correctness conditions that we use for transaction
systems - notions similar to "serializability" but stated in terms of the transaction boundary. We then present our
"Serializability Theorem", a general theorem containing a sufficient condition for proving serializability. Although
this theorem is more complicated to state than the classical Serializability Theorem, it is similar in spirit: it shows
that the existence of a single ordering of transactions that is consistent with the processing of accesses at each object ,

is sufficient to prove serializability. We use our Serializability Theorem elsewhere to prove correctness for locking
(FLMW2J and timestamp algorithms (AFLMWJ, but in this paper. we only present the theorem itself in detail and

mention some of its consequences.

The rest of the paper is organized as follows. Section 2 contains an outline of the IO automaton model, the basic
model for concurrent systems that is used for presenting all of our transaction work. Section 3 contains a description
of "serial systems", extremely constrained transaction-processing systems that are defined solely for the purpose of
stating correctness conditions for more liberal systems. Section 4 contains a description of "simple systems", very
unconstrained transaction-processing systems that represent the common features of most transaction-processing
systems. Section 5 contains our Serializability Theorem, stated in terms of simple systems. Section 6 contains a
discussion of some applications of the Serializability Theorem and Section 7 contains some final remarks.

2 The 11O Automaton Model
In order to reason carefully about complex concurrent systems such as those that implement atomic transactions,

it is important to have a simple and clearly-defined formal model for concurrent computation. The model we use for
our work is the recently-developed input/output automaton model [LTI. Since its introduction, the model has been
used for describing and reasoning about several different types of concurrent systems, including network resource
allocation algorithms, communication algorithms, concurrent database systems, shared atomic objects, and dataflow
architectures. This section contains an introduction to a simple special case of the model that is sufficient for use in
this paper. 2

2In this paper, we only consider propemes of finite executions, and do not consider "liveness" or "fainess" properties.

',
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2.1 Overview of the Model

)/0 automata provide an appropriate model for discrete event systems consisting of concurrently-operating
components. 3 The components of a discrete event system can be regarded as discrete event systems themselves. p
Such a system may be "reactive" in the sense that it interacts with its environment in an ongoing manner (rather
than, say, simply accepting an input, computing a function of that input and halting).

Each system component is modelled as an "1/0 automaton", which is a mathematical object somewhat like a
traditional finite-state automaton. However, an I/0 automaton need not be finite-state, but can have an infinite state
set. The actions of an I/0 automaton are classified as either "input", "output" or "internal". This classification is a
reflection of a distinction in the system being modelled, between events (such as the receipt of a message) that are
caused by the environment, events (such as sending a message) that the component can perform when it chooss and
that affect the environment, and events (such as changing the value of a local variable) that a component can
perform when it chooses, but that are undetectable by the environment except through their effects on later events.
In the model, an automaton generates output and internal actions autonomously, and transmits output actions
instantaneously to its environment. In contrast, the automaton's input is generated by the environment and
transmitted instantaneously to the automaton. Our distinction between input and other actions is based on who
determines when the action is performed: an automaton can establish restrictions on when it will perform an output
or internal action, but it is unable to block the performance of an input action.

p
The fact that our automata are unable to block inputs distinguishes our model from others, such as Hoare's ..-

Communication Sequential Processes ("CSP") [Hoare), or Milner's Calculus of Communicating Systems ("CCS")
[Milner]. In these models, communication between two components only occurs when both components are willing

to communicate. Thus, for example, a sender of a message is blocked until the corresponding receiver is ready to
receive the message. In CSP-like models, input blocking is used for two purposes: as a way of eliminating
undesirable inputs, and as a way of blocking the activity of the environment. Our model does not have any way of
blocking the environment, but does have other ways of coping with unwanted inputs. For example, suppose that we
wish to constrain the behavior of an automaton only in case the environment observes certain restrictions on the
production of inputs. Instead of requiring the automaton to block the bad inputs, we permit these inputs to occur,
however, we may permit the automaton to exhibit arbitrary behavior in case they do. Alternatively, we may require
the automaton to detect bad inputs and respond to them with error messages. Thus, we have simple ways of
describing input restrictions, without including input-blocking in the model.

I/0 automata may be nondeterministic, and indeed the nondeterminism is an important part of the model's
descriptive power. Describing algorithms as nondeterministically as possible tends to make results about the
algorithms quite general, since many results about nondeterministic algorithms apply a fortiori to all algorithms
obtained by restricting the nondeterministic choices. Moreover, the use of nondeterminism helps to avoid cluttering
algorithm descriptions and proofs with inessential details. Finally, the uncertainties introduced by asynchrony make
nondeterminism an intrinsic property of real concurrent systems, and so an important property to capture in a formal
model of such systems. r

Often, a single discrete event system can also be viewed as a combination of several component systems
interacting with one another. To reflect this in our model, we define an operation called "composition", by which
several I/0 automata can be combined to yield a single I/0 automaton. Our composition operator connects each per
output action of the component automata with the identically named input actions of any number (usually one) of - -

the other component automata. In the resulting system, an output action is generated autonomously by one

3By a "discrete event system" we mean an entity that undergoes sudden changes that may be named and observed, and through which the "___"
system interacts with its environment. n-'/cr

I '
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component and is thought of as being instantaneously transmitted to all components having the same action as an
input. All such components are passive recipients of the input, and take steps simultaneously with the output step.

When a system is modelled by an VO automaton, each possible run of the system is modelled by an "execution",
an alternating sequence of states and actions. The possible activity of the system is captured by the set of all
possible executions that can be generated by the automaton. However, not all the information contained in an
execution is important to a user of the system, or to an environment in which the system is placed. We believe that
what is important about the activity of a system is the externally visible events, and not the states or internal events.
Thus, we focus on the automaton's "behaviors" - the subsequences of its executions consisting of external (i.e.,
input and output) actions. We regard a system as suitable for a purpose if any possible sequence of externally-
visible events has appropriate characteristics. Thus, in the model, we formulate correctness conditions for an I/O
automaton in terms of properties of the automaton's behaviors. 4

One convenient way to specify properties of an I/O automaton's behaviors is in terms of another I/O automaton.
That is, we can define a particular "specification automaton" B and say that any automaton A is "correct" if it
"implements" B, in the sense that each finite behavior of A is also a finite behavior of B. Often, B will be a simple
system that is impractical as a real solution because it is too inefficient or uses global information, while A will be a
more efficient or distributed algorithm.

The model permits description of the same system at different levels of abstraction. Abstraction mappings can be j
defined, which describe the relationship between automata that include implementation detail to more abstract
automata that suppress some of the detail. Such mappings can be used as aids in correctness proofs for algorithms.
if automaton B is an image of automaton A under an appropriate abstraction mapping, then it can be shown that A
implements B.

The model allows very careful and readable descriptions of particular concurrent algorithms. We have developed
a simple language for describing automata, based on "precondition" and "effect" specifications for actions. This
notation has proved sufficient for describing all algorithms we have attempted so far. However, the model does not
constrain the user to describe all automata in this manner; for example, the model is general enough to serve also as
a formal basis for languages that include more elaborate constructs for sequential flow of control.

The model also allows clear and precise statement of the correctness conditions that an automaton must satisfy in
order that the system modelled by the automaton be said to solve a problem; such conditions can be stated
independently of any particular proposed solution. As described above, such properties are often conveniently
formulated in terms of implemention of a given automaton, but any other method of specifying properties of
external behaviors could be used instead. Finally, once both an algorithm and the correctness condition it is 0
supposed to satisfy have been described in the model, it is then possible to use the model as a basis for a rigorous
proof that the algorithm satisfies the given conditions.

2.2 Action Signatures :

The formal subject matter of this paper is concerned with finite and infinite sequences describing the executions
of automata. Usually, we will be discussing sequences of elements from a universal set of actions. Since the same
action may occur several times in a sequence, it is convenient to distinguish the different occurrences. Thus, we
refer to a particular occurrence of an action in a sequence as an event.

"This viewpoint differs from that taken in much of the algorithm specification work in the research literature, in which properties of the states
are taken to be of primary concen.
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The actions of each automaton are classified as either "input", "output", or "internal". In the system being
modelled, the distinctions are that input actions are not under the system's control, output actions are under the

system's control and are externally observable, and internal actions are under the system's control but are not

externally observable. In order to describe this classification formally, each automaton comes equipped with an

'action signature".

An action signature S is an ordered triple consisting of three pairwise-disjoint sets of actions. We write in(S),
out() and int(S) for the three components of S, and refer to the actions in the three sets as the input actions, output
actions and internal actions of S, respectively. We let ext(S) = in(S) u out(S) and refer to the actions in ext(S) as

the external actions of S. Also, we let local() = int(S) u out(S), and refer to the actions in local(S) as the
locally-controlled actions of S. Finally, we let acts(S) = in(S) u out(S) u int(S), and refer to the actions in acts(S) as

the actions of S. An external action signature is an action signature consisting entirely of external actions, that is,
having no internal actions. If S is an action signature, then the external action signature of S is the action signature
extsig(S) = (in(S),out(S),0), i.e., the action signature that is obtained from S by removing the internal actions.

2.3 Input/Output Automata
An input/output automaton A (also called an 1/0 automaton or simply an automaton) consists of four

components:
* an action signature sig(A),

* a set states(A) of states,

* a nonempty set start(A) c states(A) of start states, and

e a transition relation steps(A) r states(A) x acts(sig(A)) x states(A), with the property that for every state
s' and input action t there is a transition (s',irs) in steps(A). 5

Note that the set of states need not be finite. We refer to an element (s',is) of steps(A) as a step of A. The step
(s',,s) is called an input step of A if n is an input action, and output steps, internal steps, external steps and
locally-controlled steps are defined analogously. If (s'xs) is a step of A, then x is said to be enabled in s'. Since
every input action is enabled in every state, automata are said to be input-enabled. The input-enabling property
means that an automaton is not able to block input actions.

If A is an automaton, we sometimes write acts(A) as shorthand for acts(sig(A)), and likewise for in(A), out(A),
etc. An automaton A is said to be closed if all its actions are locally-controlled, i.e., if in(A) = 0.

An execution fragment of A is a finite sequence sontjslx 2 ...rNsn or infinite sequence sontsr,2... t7nsn... of
alternating states and actions of A such that (i,xi.,,si.l) is a step of A for every i. An execution fragment beginning
with a start state is called an execution. We denote the set of executions of A by execs(A), and the set of finite
executions of A byfinexecs(A). A state is said to be reachable in A if it is the final state of a finite execution of A.

The schedule of an execution fragment a of A is the subsequence of c consisting of actions, and is denoted by
sched(ox). We say that f3 is a schedule of A if 13 is the schedule of an execution of A. We denote the set of schedules
of A by scheds(A) and the set of finite schedules of A by finscheds(A). We say that a finite schedule 1 of A can
leave A in state s if there is some finite execution c of A with final state s and with sched(ct) = 5. The behavior of a
sequence 3 of actions in acts(A), denoted by beh(p), is the subsequence of P3 consisting of actions in ext(A). The

behavior of an execution fragment a of A, denoted by beh(a), is defined to be beh(sched(cz)). We say that P3 is a

5I/O automata, as defined in (Li, also include a fifth component, an equvalence relation part(A) on local(sig(A)). This component is used for
describing fair executions, and is not needed for the results described in this paper.

~~~~~~~~~e if e -'*~~%A* y%' %I~ .%' f
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behavior of A if 13 is the behavior of an execution of A. We denote the set of behaviors of A by behs(A) and the set
of finite behaviors of A byfinbehs(A).

An extended step of an automaton A is a triple of the form (s', ), where s' and s are in states(A), 0 is a finite
sequence of actions in acts(A), and there is an execution fragment of A having s' as its first state, s as its last state
and 13 as its schedule. (This execution fragment might consist of only a single state, in the case that 3 is the empty
sequence.)

If 0 is any sequence of actions and D is a set of actions, we write 314 for the subsequence of 3 consisting of
actions in 0. If A is an automaton, we write 13IA for P3lacts(A). We call this the projection of 13 on A. It can be
thought of as the portion of 13 observable by A.

2.4 Composition
1/0 automata may be combined by means of a composition operator, as defined in this section. As a preliminary

step, we first define composition of action signatures. Let I be an index set that is at most countable. A collection
{Si) i I of action signatures is said to be strongly compatible6 if for all i, j e I, we have

1. out(Si) n out(S) = 0,

2. int(S) n acts(Sj) = 0, and

3. no action is in acts(Si) for infinitely many i.

Thus, no action is an output of more than one signature in the collection, and internal actions of any signature do not
appear in any other signature in the collection. Moreover, we do not permit actions involving infinitely many
component signatures.

The composition S = L. TSi of a collection of strongly compatible action signatures [Sii I is defined to be the b
action signature with

" in(S) = uiE Itn(Si) - ui, Iout(Si),

• out(S) = i 1out(Si) , and

* int(S) = ui.-int(Si).
Thus, output actions are those that are outputs of any of the component signatures, and similarly for internal actions.
Input actions are any actions that are inputs to any of the component signatures, but outputs of no component
signature.

Now we define composition of automata. A collection (Ai) 1J 1 of automata is said to be strongly compatible if
their action signatures are strongly compatible. The composition A = I-Ii A, of a strongly compatible collection of
automata (A)ii I has the following components:7

" sig(A) = riE I sig(Ai),

* states(A) = rlE istates(A), ""

* start(A) = 1ie I start(Ai), and

" steps(A) is the set of triples (s',i,s) such that for all i - I, (a) if X E acts(A ) then (s'[i],7,s[i]) E

6A weaker ".otion called "compatibility" is defined in ILTI, consisting ot the tust two of the three given propeies only. In this paper, only the
stronger notion will be required.

7Note that the second and third components listed are just ordinary Cartesian products, while the first component uses a previous definition. I
-~ S.d.. ~P ~.P./ ...\ .\,,/ .,.. ' ~-*.* *~ \f~f',V. S% - ~ S. * ~' %S a *
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steps(A), and (b) ift x acts(A1 ) then s'[i] = s[i]. 8

Since the automata A, are input-enabled, so is their composition, and hence their composition is an automaton. Each

step of the composition automaton consists of all the automata that have a particular action in thiir action signature

performing that action concurrently, while the automata that do not have that action in their signature do n3thing.
We will often refer to an automaton formed by composition as a "system" of automata. Using the obvious

isomorphisms, composition of automata is associative and commutative when defined.

If a = s0mls 1 ... is an execution of A, let alAi , the projection of a on A,, be the sequence obtained by deleting ns,
when nt is not an action of A ,, and replacing the remaining sj by s,[i]. Recall that we have previously defined a
projection operator for action sequences. The two projection operators are related in the obvious way" sched(caA1)

= sched()IAi , and similarly beh(olA) = beh()1A1 .

We close this subsection with some basic results relating executions, schedules and behaviors of a system of

automata to those of the automata being composed. The first result says that the projections of executions of a
system onto the components are executions of the components, and similarly for schedules, etc.

Proposition 1: Let (Aiie , be a strongly compatible collection of automata, and let A = 1IiE iAi. If a e
execs(A) then aIA i r execs(Ai) for all i e I. Moreover, the same result holds for finexecs, scheds,
finscheds, behs and fimbehs in place of execs.

Certain converses of the preceding proposition are also true. In particular, we can prove that schedules of
component automata can be "patched together" to form a schedule of the composition, and similarly for behaviors.
In order to prove these results, we first state two preliminary lemmas, one involving schedules and one involving

behaviors, that say that executions of component automata can be patched together to form an execution of the

composition.

Lemma 2: Let (A) iE I be a strongly compatible collection of automata, and let A = Ai iAi . Let ca be

an execution of A,, for all i E I. Suppose 13 is a sequence of actions in acts(A) such that PIA, = sched(o)
for every i. Then there is an execution a of A such that 13 = sched(a) and a i = alAi for all i.

Lemma 3: Let (AJ i I be a strongly compatible collection of automata, and let A = l~i 1A,. Let a i be
an execution of A,, for all i E I. Suppose 0 is a sequence of actions in ext(A) such that 1IA = beh(a ) fo-
every i. Then there is an execution ct of A such that 3=beh(a) and c.S = oJAi for all i.

Now the results about patching together schedules and patching together behaviors follow easily.

Proposition 4: Let (A 1ii I be a strongly compatible collection of automata, and let A = li IA,.

1. Let b3 e a sequence of actions in acts(A). If 31A e scheds(Ai) for all i e I, then 3 scheds(A).

2. Let 13 be a finite sequence of actions in acts(A). If 3IA i E finscheds(A i) for all i e I. then 3 6
finscheds(A).

3. Let 13 be a sequence of actions in ext(A). If PIAi E behs(Ai) for all i e I, then 13 E behs(A).

4. Let 13 be a finite sequence of actions in ext(A). If 31A E finbehs(Ai) for all i E I, then 13 E
finbehs(A).

Proof: By Lemmas 2 and 3.

Proposition 4 provides a method for showing that certain sequences are behaviors of a composition A: first show

that i~s projections are behaviors of the components of A and then appeal to Proposition 4. r

Swe use the notation s[i] to denote the i component of the state vector s.
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2.5 Correspondences Between Automata
In this subsection, we define the notion of "implementation" which is useful in stating correctness conditions to be

satisfied by automata. Let A and B be automata with the same external action signature, i.e., with extsig(A) =

extsig(B). Then A is said to implement B if finbehs(A) Q finbehs(B). One reason for the usefulness of the notion of
implementation as a correctness condition is the following fact: if A implements B, then replacing B by A in any

system yields a new system in which all finite behaviors are behaviors of the original system. In fact, as the
following proposition shows, we can take any collection of components of a system and replace each by an
implementation, and the resulting system will implement the original one.

Proposition 5: Suppose that {Ajie) is a strongly compatible collection of automata, and let A =

l., A. Also suppose that (BiiIe, is a strongly compatible collection of automata, and let B = l'3B ,. If
for each index i in I, Ai implements Bi , then A implements B.

In order to show that one automaton implements another, it is often useful to demonstrate a correspondence
between states of the two automata. Such a correspondence can often be expressed in the form of a kind of
absraction mapping that we call a "possibilities mapping", defined as follows. Suppose A and B are automata with
the same external action signature, and suppose f is a mapping from states(A) to the power set of states(B). That is,
if s is a state of A, f(s) is a set of states of B. The mapping f is said to be a possibilities mapping from A to B if the
following conditions hold:

1. For every start state so of A, there is a start state to of B such that to E f(sO).

2. Let s' be a reachable state of A, t' c f(s') a reachable state of B, and (s',x,s) a step of A. Then there is
an extended step, (t',y,t), of B (possibly having an empty schedule) such that the following conditions
are satisfied:

a. *xt(B) = nrlext(A), and

b. t E f(s).
Proposition 6: Suppose that A and B are automata with the same external action signature and there is

a possibilities mapping, f, from A to B. Then A implements B.

2.6 Preserving Properties
Although an automaton in our model is unable to block input actions, it is often convenient to restrict attention to

those behaviors in which the environment provides inputs in a "sensible" way, that is, where the interaction between
the automaton and its environment obeys certain "well-formedness" restrictions. A useful way of discussing such
restrictions is in terms of the notion that an automaton "preserves" a property of behaviors: as long as the
environment does not violate the property, neither does the automaton. Such a notion is primarily interesting for
properties that are "prefix-closed" and "limit-closed": formally, a set of sequences P is prefix-closed provided that
whenever 5 E P and y is a prefix of P, it is also the case that y P. A set of sequences P is limit-closed provided that

any sequence all of whose finite prefixes are in P is also in P.

Let (V be a set of actions and P be a nonempty, prefix-closed, limit-closed set of sequences of actions in 4) (i.e., a
nonempty, prefix-closed, hmit-closed "property" of such sequences). Let A be an automaton with (D Q ext(A). We

-Ii say that A preserves P if Pir E finbehs(A), It E out(A) and 1014 E P together imply that inI4) E P. Thus, if an

automaton preserves a property P, the automaton is not the first to violate P: as long as the environment only
provides inputs such that the cumulative behavior satisfies P, the automaton will only perform outputs such that the
cumulative behavior satisfies P. Note that the fact that an automaton A preserves a property P does not imply that all
of A's behaviors, when restricted to 0), satisfy P; it is possible for a behavior of A to fail to satisfy P, if an input
causes a violation of P. However, the following proposition gives a way to deduce that all of a system's behaviors
satisfy P. The lemma says that, under certain conditions, if all components of a system preserve P, then all the
behaviors of the composition satisfy P.

N b .
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Proposition 7: Let (AJ ii I be a strongly compatible collection of automata, and suppose that A. the
composition, is a closed system. Let 0 c ext(A), and let P be a nonempty, prefix-closed, limit-closed set
of sequences of actions in 4. Suppose that for each i E I, one of the following is true.

1. 0 Q ext(Ai) and Ai preserves P, or

2. V r) ext(A) = 0.
If 3 E behs(A), then 310 e P.

3 Serial Systems and Correctness
In this section, we develop the formal machinery needed to define correctness for transaction-processing systems.

Correctness is expressed in terms of a particular kind of system called a "serial system". We define serial systems
here, using I/O automata.

3.1 Overview
Transaction-processing systems consist of user-provided transaction code, plus transaction-processing algorithms

designed to coordinate the activities of different transactions. The transactions are written by application

programmers in a suitable programming language. In some transaction-processing systems such as the Argus
system, transactions have a nested structure, so that wansactions can invoke subtransactions and receive responses
from the subtransactions describing the results of their processing. In addition to invoking subtransactions,
transactions car also invoke operations on data objects.

In a transaction-processing system, the transaction-processing algorithms interact with the transactions, making
decisions about when to schedule the creation of subtransactions and the performance of operations on objects. In
order to carry out such scheduling, the transaction-processing algorithms may manipulate locks on objects, multiple
copies of objects, and other convenient data structures. One popular organization divides the transaction processing
into a "scheduler algorithm" and a "database" of objects. In this organization, the scheduler has the power to decide
when operations are to be performed on the objects in the database, but not to perform more complex manipulations
on objects (such as maintaining multiple copies). Although this organization is popular, it does not encompass all
the useful system designs.

In our work, each component of a transaction-processing system is modelled as an I/O automaton. In particular,
each transaction is an automaton, and all the transaction-processing algorithms together comprise another
automaton.

It is not obvious at first how one ought to model the nested structure of transactions within the 1/O automaton p
model. One might consider defining special kinds of automata that have a nested structure, for example. However,
it appears that the cleanest way to model this structure is to describe each subiransaction in the transaction nesting
structure as a separate automaton. If a parent transaction T withes to invoke a child transaction T', T issues an
output action that "requests that T' be created". The transaction-processing algorithms receive this request, and at
some later time might decide to issue an action that is an input to the child T' and corresponds to the "creation" of
T'. Thus, the different transactions in the nesting structure comprise a forest of automata, communicating with each
other indirectly through the transaction-processing automaton. The highest-level user-defined transactions, i.e.,

those that are not subtransactions of any other user-defined transactions, are the roots in this forest. I
It is actually more convenient to model the transaction nesting structure as a tree than a forest. Thus, we add an

extra "root" automaton as a sort of "dummy transaction", located at the top of the transaction nesting structure. The
highest-level user-defined uansactions are considered to be children of this new root. The root can be thought of as

'' J.. %' %% • % % A%"-' ' , % " . ,i .'- '. " • " " " . . " . % . -- ", . .. ..- ",.,. . - , • % "•*
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modelling the outside world, from which invocations of top-level transactions originate and to which reports about
the results of such transactions are sent. We often find that the formal reasoning we want to do about this dummy
root transaction is very similar to our reasoning about ordinary transactions; thus, regarding the root as a transaction
leads to economy in our formal arguments. S

The primary goal of this section is to define correctness conditions to be satisfied by transaction-processing
A

systems. As we discussed in the introe.xction, it seems most natural and general to define correctness conditions in
terms of the actions occurring at the boundary between the transactions (including the root transaction) and the
transaction-processing automaton. For it is immaterial how the transaction-processing algorithms work, as long as
the outside world and the transactions see "correct" behavior. We define correct behavior for a transaction-
processing system in terms of the behavior of a particular and very constrained "serial" transaction-processing
system, which processes all transactions serially.

Serial systems consist of transaction automata and "serial object automata" composed with a "serial scheduler
automaton". Transaction automata have already been discussed above. Serial object automata serve as
specifications for permissible object behavior. They describe the responses the objects should make to arbitrary
sequences of operation invocations, assuming that later invocations wait for responses to previous invocations.
Serial objects are very much like the ordinary abstract data objects that are used in sequential programming
languages.

The serial scheduler handles the communication among the transactions and serial objects, and thereby controls
the order in which the transactions take steps. It ensures that no two sibling transactions are active concurrently -

that is, it runs each set of sibling transactions serially. The serial scheduler is also responsible for deciding if a
transaction commits or aborts. The serial scheduler can permit a transaction to abort only if its parent has requested
its creation, but it has not actually been created. Thus, in a serial system, all sets of sibling transactions are run
serially, and in such a way that no aborted transaction ever performs any steps.

A serial system would not be an interesting transaction-processing system to implement. It allows no concurrency
among sibling transactions, and has only a very limited ability to cope with transaction failures. However, we am %
not proposing serial systems as interesting implementations; rather, we use them exclusively as specifications for %
correct behavior of other, more interesting systems. In our work, we describe many systems that do allow
concurrency and recovery from transaction failures. (That is, they undo the effects of aborted transactions that have
performed significant activity.) We prove that these systems are correct in the sense that certain transactions, and in

particular To, cannot distinguish them from corresponding serial systems. It appears to the transactions as if all
siblings are run serially, and aborted transactions are never created, even though in reality, the systems allow
concurrency and recovery from transaction failures.

In the remainder of this section, we develop the necessary machinery for defining serial systems and correctness.
First, we define a type structure used to name transactions and objects. Then we describe the general structure of a
serial system - the components it includes, the actions the components perform, and the way the components am
interconnected. We define several concepts involving the actions of a serial system. We then go on to define the
components of a serial system in detail, and state some basic properties of serial systems. Finally, we use serial
systems to state correctness conditions for transaction-processing systems. t(

'S
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3.2 System Types
We begin by defining a type structure that will be used to name the transactions and objects in a serial system.

A system type consists of the following:
" a set Tof transaction names,

" a distinguished transaction name To E 7.

" a subset accesses of Tnot containing To,

" a mapping parent: F- (To) - F, which configures the set of transaction names into a tree, with To as
the root and the accesses as the leaves,

" a set Xof object names,

" a mapping object: accesses -, X, and

" a set Vof return values.
In referring to the transaction tree, we use standard tree terminology, such as "leaf node", "internal node", "child",
"ancestor", and "descendant". As a special case, we consider any node to be its own ancestor and its own
descendant, i.e. the "ancestor" and "descendant" relations are reflexive. We also use the notion of a "least common
ancestor" of two nodes.

The transaction tree describes the nesting structure for transaction names, with To as the name of the dummy "root
transaction". Each child node in this tree represents the name of a subtransaction of the transaction named by its
parent. The children of To represent names of the top-level user-defined transactions. The accesses represent names
for the lowest-level transactions in the transaction nesting structure; we will use these lowest-level transactions to
model operations on data objects. Thus, the only transactions that access data directly are the leaves of the
transaction tree. The internal nodes model transactions whose function is to create and manage subtransactions, but
not to access data directly.

The tree structure should be thought of as a predefined naming scheme for all possible transactions that might
ever be invoked. In any particular execution, however, only some of these transactions will actually take steps. We
imagine that the tree structure is known in advance by all components of a system. The tree will, in general, be an
infinite structure with infinite branching.

Classical concurrency control theory considers transactions having a simple nesting structure. As modelled in our
framework, that nesting structure has three levels; the top level consists of the root To, modelling the outside world,
the next level consists of all the user-defined transactions, and the lowest level consists of the accesses to data
objects.

The set Xis the set of names for the objects used in the system. Each access transaction name denotes an access
to some particular object, as designated by the "object" mapping. If X e X, the set of accesses T for which object(T)
= X is called accesses().

The set V of return values is the set of possible values that might be returned by successfully-completed
transactions to their parents. If T is an access transaction name, and v is a return value, we say that the pair (T,v) is
an operation of the given system type. Thus, an operation designates a particular access to an object and a particular
value returned by the access.

Jch
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3.3 General Structure of Serial Systems
A serial system for a given system type is a closed system consisting of a "transaction automaton" A(T) for each

non-access transaction name T, a "serial object automaton" S(X) for each object name X, and a single "serial
scheduler automaton". Later in this chapter, we will give a precise definition for the serial scheduler automaton, and 0
will give conditions to be satisfied by the tansaction and object automata. Here, we just describe the signatures of
the various automata, in order to explain how the automata are interconnected.

The following diagram depicts the structure of a serial system.

Transaction
Automata /S

e

a
I

S
C

d

II N/o
e
r
A
U
t
0
m
a
t
0
U

Object Automata

Figure 1: Serial System Structure

The trnsaction nesting strcure is indicated by dotted lines, and the direct connections between automata (via
shared actions) are indicated by solid lines. Thus, the transaction automata interact directly with the serial
scheduler, but not direcdy with each other or with the object automata. The object automata also interact directly
with the serial schadler.
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CREATE(Ti IREQ UESTCOMMIT(T,v)

A(T) T' a child of T

REQUEST-CREATE(T'HR PORT-AGOMT(T')

Figure 2: Transaction Automaton

Figure 2 shows the interface of a transacuon automaton in more detail. Transaction T has an input CREATET)
action, which is generated by the serial scheduler in order to in ait T's processing. We do not include arguments to
a msaction in our model; rather we suppose dt there is a different transacicon for each possible set of arguments,
and so any input to the transaction is encoded in the name of the transaction. T has REQUESCREATE(r)
actions for each child r of T in die ransaction nesting struc re; these am requests for creation of child
tansactions, and am communicaed directly to die serial scheduler. At some lor time, he scheduler might respond
to a REQUESt-CREATE() action by issuing a CREATE(r') action, an inuu to treuna tion T'. T al has
REPORT _COMMr(T',v) and REPORTABORT(T') input actions, by which the serial scheduler informs T about
the fate (commit or abort) of its prieviously-requened child T. In the case of a commit, the report includes a retmn
value v that provides information about the activity of 1; in fe cam of an Abo no information is returned.
Finally, T has a REQUESTCOMM1T(Tv) output action., by which it announces to the schedler that it has
completed its activity successfly, with a particular result as described by remn value v.

EQUEST..COMMIT(T,v)

S(X) 
T an aceto X

CREATE(T) I.

Figure 3: Object Automaton

Figure 3 shows the object interface. Object X has input CREATE(7) actions for each T in wcseX). These
actions should be thought of as invocations of operations on object X. Object X also has output actions of the form
REQUESTCOMMIT(Tv), repmsenting responses to the invocatios The value v in a REQUESTCOMMIT(T,v)
action is a return value returned by the object as pat of it response. We have chosen to use the "reate" and
"requesLcommit" notation for the object actons, rather than the more familiar "invoke" and "respond" terminology,
in the inumm of uniformity: there awe many places in our formal arguments where acces trsactions can be
treated unionly with non-access transactions, and so it is useful to have a common notation for them.

%e We •*
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Figure 4: Serial Scheduler Automaton

Figure 4 shows the serial schedule interface. IVe serial scheduler receives the previouszy-mentioned

REQUEST-.CREATE and REQUEST..COMMJT actions as inputs from the other system components It produces
CREATE actis as outputs thereby awakening truasction automata or invoking operations on objects. Ic also
Produces COMhGM And ABORTMl action for arbitrary tronsccawis T * To, representing decision about
whether the designated transaction commits or sixots. For technical convenice, we classify che COMMIT and

ABORT actions as output actions of die serial scheduler, even though they am nol input gD any other system
componlent Finally, the serial scheduler hus REPORT-COMMoIT and REPORT_.ABORT actons as outputs, by
which it communicate the fates of tranaions to thei parents.

As is always die case for & composition Of IVA)U U moathde component Of a serial system am determined
statically. Even though we refer to dhe action ot "creating" a child truisaction, die model owat the child transaction
as if it had been there all along. Me CREATE action is tWeated fonaly as an input action to the child transaction;
the child trowsution will be consrained not to FPerfom any output actions until such a CREATE action occurs. A

cons quence of this method of modelling dynamic craana tions of,. as dom do system must include aumot
for all possible trasactions that might ever be r -PdI in any execution In most interesting cases this mumns dta
the system will include infinitely many tansaction Automata.

3.4 Serial Actions
The senal acdions for a given system type m defined to be t external actions of a serial system of that type.

Thaw we just the actions litd in die VPecedingS sectime CREATEM and REQUEST..CONMTrrCv). where T is
any transaction ns and v is a reurn. value, anid REQUEST...CREATEMT) COMMT(T) ABORT(T)

ROTCOMMrrF,v). and REPORT..ABORT(T where T * To is a namucio nmd v is a retuw value.

in this subsection we define som basc concepts invig serial actions, for us later in die poper- All these
definitions am based on dhe set of serial actions only, and not on the specific outomsa in the serial system. For this
rawn, we present the 4ofinitons, here before going on (in the next subsection) to give more information about the
system components.

3A1 Book Defadlim
ThW COhMr and ABORTM action we called completon action for T, while dhe

REPORT-COMMIT(T~v) and REPORT-ABORT() action awe called repot action for T.

We define the "tasaction" of mm action that p;s in the interface of a transaction or object automaton - that J
is, of any non-completion action. Let T be any transaction name. If xi is one of the serial actkns CREATEM,
REQUEST..COMMIT(T,v). or REQUEST..CREAT). REftORT..COMMIT(r'v') or REPORT-ABORTMr),
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where T' is a child of T, then we define transaction(n) to be T. If x is a completion action, then ransaction(n) is
undefined. We will sometimes want to associate a transaction with completion actions as well as other serial
actions, since a completion action for T can be thought of as occurring "in between" T and parent(T), we will
sometimes want to associate T and sometimes parent(T) with the action. Thus, we extend the "rransaction(n)"
definition in two different ways. If t is any serial action, then we define hightransaction(t) to be transaction(n) if x
is not a completion action, and to be parent(T), if 7t is a completion action for T. Also, if t is any serial action, we
define lowtransaction(7t) to be transaction(n) if 7t is not a completion action, and to be T, if nt is a completion action
for T. In particular, hightransaction(7t) = lowtransacion(nt) = transaction(it) for all serial actions other than
completion actions.

We also require notation for the object associated with any serial action whose transaction is an access. If t is a
serial action of the form CREATET or REQUESTCOMMIT(T,v), where T is an access to X, then we define
object() to be X.

We extend the notation in the preceding paragraphs to events as well as actions. For example, if 7c is an event,
then we write transaction(n) to denote the transaction of the action of which x is an occurrence.

Recall that an operation is a pair (T,v), consisting of a transaction name and a return value. We can associate
operations with a sequence of serial actions, as follows. If 13 is a sequence of serial actions, we say that the operation
(T,v) occurs in 13 if there is a REQUEST_COMMIT(T,v) event in 3. Conversely, we can associate serial actions
with a sequence of operations. For any operation (T,v), let perform(T,v) denote the two-action sequence
CREATE(T) REQUESTCOMMIT(T,v), the expansion of (T,v) into its two parts. This definition is extended to
sequences of operations in the natural way: if 4 is a sequence of operations of the form 4'(T,v), then perform(4) =
perform(4') perform(T,v). Thus, the "perform" function expands a sequence of operations into a corresponding
alternating sequence of CREATE and REQUESTCOMMIT actions.

Now we require terminology to describe the status of a transaction during execution. Let 13 be a sequence of serial
actions. A transaction name T is said to be active in 1 provided that 13 contains a CREATE(T) event but no
REQUESTCOMMIT event for T. Similarly, T is said to be live in 1 provided that 1A contains a CREATE(T) event
but no completion event for T. Also, T is said to be an orphan in 13 if there is an ABORT(U) action in P3 for some
ancestor U of T.

We have already used projection operators to restrict action sequences to particular sets of actions, and to actions
of particular automata. We now introduce another projection operator, this time to sets of transaction names.
Namely, if 13 is a sequence of serial actions and I/ is a set of transaction names, then Pit/ is defined to be the
sequence PI1{it: transaction(it) e 1}. If T is a transaction name, we sometimes write PIT as shorthand for I3(T).
Similarly, if 3 is a sequence of serial actions and X is an object name, we sometimes write PIlX to denote P31{it=
object(g) = X}.

Sometimes we will want to use definitions from this subsection for sequences of actions chosen from some other
set besides the set of serial actions - usually, a set containing the set of serial actions. We extend the appropriate
definitions of this subsection to such sequences by applying them to the subsequences consisting of serial actions.
Thus, if 13 is a sequence of actions chosen from a set 0 of actions, define serial(P) to be the subsequence of 13
consisting of serial actions. Then we say that operation (T,v) occurs in P3 exactly if it occurs in serial(p). A
transaction T is said to be active in P provided that it is active in serial(P), and similarly for the "live" and "orphan"
definitions. Also, 11/is defined to be serial(3)l1/, and similarly for projection on an object.
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3.4.2 Weil-Formedness
In the definition of a serial system in the following subsection, we will place very few constraints on the

transaction automata and serial object automata. However, we will want to assume that certain simple properties are

guaranteed; for example, a transaction should not take steps until it has been created, and an object should not

respond to an operation that has not been invoked. Such requirements are captured by "well-formedness

conditions", certain properties of sequences of external actions of the transaction and object components. We define

those conditions here.

First we define "transaction well-formedness". Let T be any transaction name. A sequence 1 of serial actions 7t
with transaction~x) = T is defined to be transaction well-formed for T provided the following conditions hold.

1. The first event in 0, if any, is a CREATECI) event, and there are no other CREATE events.

2. There is at most one REQUEST CREATE(T') event in 13 for each child T' of T.

3. Any report event for a child T' of T is preceded by REQUEST_CREATE(T') in 13.
4. There is at most one report event in 1 for each child T' of T.

5. If a REQUESTCOMMIT event for T occurs in P, then it is preceded by a report event for each child
T' of T for which there is a REQUEST.CREATE(T') in P3.

6. Ifa REQUESTCOMMIT event for T occurs in P, then it is the last event in 1.
In particular, if T is an access transaction name, then the only sequences that are transaction well-formed for T are
the prefixes of the two-event sequence CREATET REQUESTCOMMIT(T,v). For any T, it is easy to see that the
set of transaction well-formed sequences for T is nonempty, prefix-closed and limit-closed. 1.

Now we define "serial object well-formedness". Let X be any object name. A sequence of serial actions 7c with
object(n) = X is defined to be serial object well-formed for X if it is a preftx of a sequence of the form CREATE(Tt)
REQUEST COMMIT(T1 ,vl) CREATE(T2) REQUESTCOMMIT(T 2,v2) .... where Ti * Tj when i * j. The ,
following connection between serial object well-formedness and transaction well-formedness is immediate.

Lemma 8: Let 13 be a sequence of serial actions x with object(x) = X. If P is serial object well-formed
for X and T is an access to X, then OrT is transaction well-formed for T.

3.5 Serial Systems
We are now ready to define "serial systems". Serial systems are composed of transaction automata, serial object

automata, and a single serial scheduler automaton. There is one transaction automaton A(T) for each non-access
transaction name T, and one serial object automaton S(X) for each object name X. We describe the three kinds of

components in turn. ,'

3.5.1 Transaction Automata
A transaction automaton AT) for a non-access transaction name T of a given sy:tem type is an I/0 automaton ",

with the following external action signature. V.

Input: 'w.,
CREATE(T) 0
REPORTCOMMIT(T',v), for T' a child of T, and v a return value
REPORTABORT(T'), for T' a child of T

Output:
REQUESTCREATE(T'), for T' a child of T
REQUESTCOMMIT(T,v), for v a return value

In addition, A(T) may have an arbitrary set of internal actions. We require A(T) to preserve transaction well- 40

formedness for T, as defined in the previous section. As discussed earlier, this does not mean that all behaviors of "

W %V, V
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AMT are transaction well-formed, but it does mean that as long as the environment of AJ) does not violate
transaction well-formedness, AM will not do so. Except for that requirement, transaction automata can be chosen

arbitrarily. Note that if P3 is a sequence of actions, then P13T = Pext(A(T)).

Transaction automata are intended to be general enough to model the transactions defined in any reasonable

programming language. Of course, there is still work required in showing how to define appropriate transaction

automata for the transactions in any particular language. This correspondence depends on the special features of

each language, and we do not describe techniques for establishing such a correspondence in this paper.

3.5.2 Serial Object Automata
A serial object automaton S(X) for an object name X of a given system type is an I/O automaton with the

following external action signature.

Input:
CREATE(T), for T an access to X

Output:
REQUESTCOMMIT(T,v), for T an access to X

In addition, S(X) may have an arbitrary set of internal actions. We require S(X) to preserve serial object
well-formedness for X, as defined in the previous section. As with transaction automata, serial object automata can

be chosen arbitrarily as long as they preserve serial object well-formedness.

3.5.3 Serial Scheduler

There is a single serial scheduler automaton for each system type. It runs transactions according to a depth-first

traversal of the transaction tree, running sets of sibling transactions serially. The serial scheduler can choose

nondeterministicaily to abort any transaction after its parent has requested its creation, as long as the transaction has
not actually been created. In the context of this scheduler, the "semantics" of an ABORT(T) action are that

transaction T was never created. The scheduler does not permit any two sibling transactions to be live at the same

time, and does not abort any transaction while any of its siblings is active. We now give a formal definition of the

serial scheduler automaton. "0

The action signature of the serial scheduler is as follows.

Input:
REQUEST_.CREATE(T), T* To

REQUEST-COMMIT(T,v)
Output:

CREATE(T)
COMMIT(T), T * To

ABORT(T), T * To

REPORTCOMMIT(T,v), T * To

REPORThABORT(T), T * To  1.

Each state s of the serial scheduler consists of six sets, denoted via record notation: s.create-requested, s.created,

s.commit requested, s.committed, s.aborted and s.reported. The set s.commit_requested is a set of operations. The
others are sets of transactions. There is exactly one start state, in which the set create.requested is (TO), and the

other sets are empty. We use the notation s.completed to denote s.committed u s.aborted. Thus, s.completed is not
an actual variable in the state, but rather a "derived variable" whose value is determined as a function of the actual

state variables.

The transition relation of the serial scheduler consists of exactly those triples (s',xt,s) satisfying the preconditions

I

lop'f--i
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and yielding the effects described below, where it is the indicated action. By convention, we include in the effects

only those conditions on the state s that may change with the action. If a component of s is not mentioned in the

effects, it is implicit that the set is the same in s' and s.

REQUESTCREATE(T), T * To  64

Effect:
s.create_requested = s'.create-requested u (T)

REQUESTCOMMIT(T,v)
Effect:

s.commiLrequested = s'.commit-requested u [(T,v))

CREATE(T)
Precondition:

T e s'.create_requested - s'.created
T e s'.aborted
siblings(T) n s'.created r s'.completed

Effect:
s.created = s'.created u (T)

COMMIT(T), T * To
Precondition:

(T,v) e s'.commitrequested for some v
T e s'.completed

Effect:
s.committed = s'.committed u (TI

ABORT(T, T * To

Precondition:
T E s'.create-requested - s'.completed
T 9 s'.created
siblings(T) r s'.created a s'.completed

Effect:
s.aborted = s'.aborted u {T)

REPORTCOMM1T(T,v), T * To
Precondition:

T e s'.committed
(T,v) r s'.commit_requested
T e s'.reported

Effect:
s.reported = s'.reported u (T)

REPORT-ABORTM, T* To
Precondition:

T e s'.aborted
T e s'.reported

Effect:
s.reported = s'.reported u (T)

Thus, the input actions, REQUEST-CREATE and REQUESTCOMMIT, simply result in the request being
recorded. A CREATE action can occur only if a corresponding REQUESTCREATE has occurred and the

CREATE has not already occurred. Moreover, it cannot occur if the transaction was previously aborted. The third
precondition on the CREATE action says that the serial scheduler does not create a transaction until each of its
previously created sibling transactions has completed (i.e., committed or aborted). That is, siblings are run
sequentially. A COMMIT action can occur only if it has previously been requested and no completion action has

!I%
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yet occurred for the indicated transaction. An ABORT action can occur only if a corresponding
REQUESTCREATE has occurred and no completion action has yet occurred for the indicated transaction. e
Moreover, it cannot occur if the transaction was previously created. The third precondition on the ABORT action

says that the scheduler does not abort a transaction while there is activity going on on behalf of any of its siblings.
That is, aborted transactions are dealt with sequentially with respect to their siblings. The result of a transaction can
be reported to its parent at any time after the commit or abort has occurred.

The following lemma describes simple relationships between the state of the serial scheduler and its
computational history.

Lemma 9: Let 13 be a finite schedule of the serial scheduler, and let s be a state such that 13 can leave the
serial scheduler in state s. Then the following conditions are true.

1. T E s.createjrequested exactly if T = To or 13 contains a REQUESTCREATE(T) event.

2. T E s.c reated exacity if 5 contains a CREATE(T) event.

3. (T,v) E s.commitrequested exactly if 13 contains a REQUESTCOMMIT(Tv) event.

4. T E s.committed exactly if 13 contains a COMMITT event.

5. T e s.aborted exactly if 13 contains an ABORT(T) evenL

6. T r s.reported exactly it 13 contains a report event for T.

7. s.commined r) s.aborted =0.

8. s.reported c s.committed u s.aborted.

The following lemma gives simple facts about the actions appearing in an arbitrary schedule of the serial
scheduler.

Lemma 10: Let 13 be a schedule of the serial scheduler. Then all of the follov'ing hold:
1. If a CREATE(T) event appears in 13, then a REQUEST-CREATE(T) event precedes it in 13.

2. At most one CREATE(T) event appears in 13 for each transaction T.

3. If a COMMIT(T) event appears in 13 then a REQUEST-COMMIT(T,v) event precedes it in 13 for
some return value v.

4. If an ABORT(T) event appears in 13 then a REQUEST-CREATE(T) event precedes it in 13.

5. If a CREATE(T) or ABORT(T) event appears in 13 and is preceded by a CREATE(T') event for a
sibling T' of T, then it is also preceded by a completion event for T'.

6. At most one completion event appears in 13 for each transaction.

7. At most one report event appears in 13 for each transaction.

8. If a REPORT-COMMIT(T,v) event appears in 13, then a COMMIT(T) event and a
REQUESTCOMMIT(T,v) event precede it in 13.

9. If a REPORT-ABORT(T) event appears in 13, then an ABORT(T) event precedes it in 13.
Proof: By Lemma 9 and the serial scheduler preconditions.

"%e final lemma of this subsection says that the serial scheduler preserves the well-formedness properties %P
ibed earlier.

Lemma 11:
1. Let T be any transaction name. Then the serial scheduler preserves transaction well-formedness 06II

for T.

2. Let X be any object name. Then the serial scheduler preserves serial object well-formedness for
X.

Ib
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Proof: By the definitions and the characterization given in Lemma 10.

3.5.4 Serial Systems, Executions, Schedules and Behaviors
A serial system of a given system type is the composition of a strongly compatible set of automata indexed by the

union of the set of non-access transaction names, the set of object names and the singleton set (SS) (for "serial
scheduler"). Associated with each non-access transaction name T is a transaction automaton A() for T. Associated
with each object name X is a serial object automaton S(X) for X. Finally, associated with the name SS is the serial
scheduler automaton for the given system type. When the particular serial system is understood from context, we
will sometimes use the terms serial executions, serial schedules and serial behaviors for the system's executions,
schedules and behaviors, respectively.

A fundamental property of serial behaviors is that they are well-formed for each transaction and object name.
Proposition 12: If 0 is a serial behavior, then the following conditions hold.

1. For every transaction name T, 3rT is transaction well-formed for T.

2. For every object name X, 5l1X is serial object well-formed for X.

Proof: For non-access transaction names T, or arbitrary object names X, the result is immediate by
Lemma 7, the definitions of transaction and object automata, and Lemma 11. Suppose that T is an access
to X. Since 131X is serial object well-formed for X, Lemma 8 implies that OrIT is transaction well-formed
for T.

Another fundamental property of serial behaviors is that the live transactions always form a chain of ancestors, as
indicated below.

Proposition 13: Let 0 be a serial behavior.
1. If T is live in 03 and T' is an ancestor of T, then T' is live in [.
2. If T and T' are transaction names such that both T and T' ae live in D, then either T is an ancestor

of T' or T' is an ancestor of T.

In the remainder of the paper, we fix an arbitrary system type and serial system, with A(T) as the non-access
transaction automaton for each transaction name T, and S(X) as the serial object automaton for each object name X.

3.6 Correctness Conditions
Now that we have defined serial systems, we can use them to state correctness conditions for other transaction-

processing systems. It is reasonable to use serial systems in this way because of the particular constraints the serial
scheduler imposes on the orders in which transactions and objects can perform steps. We contend that the given
constraints correspond precisely to the way nested transaction systems ought to appear to behave; in particular, these
constraints yield a natural generalization of the notion of serial execution in classical transaction systems. We amve
at a number of correctness conditions by considering for which system components this appearance must be
maintained: for the external environment T0 , for all transactions, or for all non-orphan transactions.

To express these correctness conditions we define the notion of "serial correctness" of a sequence of actions for a
particular transaction name. We say that a sequence 0 of actions is serially correct for transaction name T provided
that there is some serial behavior y such that OIT = yrT. (Recall that if T is a non-access, we have OflT = fOlext(A(T))
and 'f4T = 'lext(A(T)). If T is a non-access transaction, serial correctness for T is a condition that guarantees to
implementors of T that their code will encounter only situations that can arise in serial executions.

The principal notion of correctness that we will use in this paper is the serial correctness of all finite behaviors for
the root transaction name To. This says that the "outside world" cannot distinguish between the given system and

w'
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the serial system.

Many of the algorithms we study satisfy stronger correctness conditions. A fairly strong and possibly interesting
correctness condition is the serial correctness of all finite behaviors for all transactions names. Thus, neither the
outside world nor any of the individual user transactions can distinguish between the given system and the serial
system. Note that the definition of serial correctness for all transactions does not require that all the transactions see
behavior that is part of the same execution of the serial system; rather, each could see behavior arising in a different
execution.

We will also consider intermediate conditions such as serial correctness for all non-orphan transaction names.
This condition implies serial correctness for To because the serial scheduler does not have the action ABORT(T() in
its signature, so To cannot be an orphan. Most of the popular algorithms for concurrency control and recovery
guarantee serial correctness for all non-orphan transaction names. Our Serializability Theorem gives sufficient
conditions for showing that a behavior of a transaction-processing system is serially correct for an arbitrary non-
orphan transaction name, and can be used to prove this property for many of these algorithms. The usual algorithms
do not guarantee serial correctness for orphans, however, in order to guarantee this as well, the use of a special
"orphan management" algorithm is generally required. Such algorithms are described and their correctness proved
in [HLMW].

We close this subsection with a proposition that shows that serial correctness with respect to a transaction name T,
a notion defined in terms of behaviors of T, implies a relationship between executions of T in the two systems.

Proposition 14: Let {Bi) i I be a strongly compatible set of automata and let B = R., Bi. Suppose that
non-access transaction name T is in the index set I and suppose that BT and A(T) are the same automaton.
Let ct be a finite execution of B, and suppose that beh(a) is serially correct for T. Then there is a serial
execution a' such that aiBT = a'lAM.

Proof: Proposition 1 implies that cdB.r is an execution of BT, and then Lemma 3 can be used to patch %
together the desired execution.

4 Simple Systems
It is desirable to state our Serializability Theorem in such a way that it can be used for proving correctness of

many different kinds of transaction-processing systems, with radically different architectures. We therefore define a
"simple system", which embodies the common features of most transaction-processing systems, independent of their
concurrency control and rerovery algorithms, and even of their division into modules to handle different aspects of
transaction-processing. A "simple system" consists of the transaction automata together with a special automaton
called the "simple database". Our theorem is stated in terms of simple systems.

Many complicated transaction-processing algorithms can be understood as implementations of the simple system.
For example, a system containing separate objects that manage locks and a "controller" that passes information
among transactions and objects can be represented in this way, and so our theorem can be used to prove its
correctness. The same strategy works for a system containing objects that manage timestamped versions and a
controller that issues timestamps to transactions.

4.1 Simple Database J"
There is a single simple database for each system type. The action signature of the simple database is that of the ".

composition of the serial scheduler with the serial objects:

Input: E )
REQUEST..CREATE(T, T * T
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REQUEST_COMMIT(T,v), T a non-accessOutput
CREATE(T)
COMMIT(m), T * To
ABORTmD, T * To  

,

REPORTCOMMIT(T,v), T # To
REPORTABORT(T), T * To

REQUESTCOMMIT(T,v), T an access
%,

States of the simple database are the same as for the serial scheduler, and the initial states are also the same. The

transition relation is as follows.

REQUESTCREATEM, T * To

Effect:
s.createjrequested = s'.createrequested u (T) %

REQUEST COMMIT(T,v), T a non-access
Effect:

s.commiLrequested = s'.commit-requested u ((T,v)) ,

CREATE(
Precondition:

T e s'.creaze~jequested - s'.created
Effect:

s.created = s'.created u (T)

COMMIT(T), T * To

Precondition:
(T,v) E s'.commitrequested for some v
T e s'.completed

Effect:
s.committed = s'.committed u (TI

ABORT(T), T * To
Precondition:

T e s'.create_requested - s'.completed
Effect:

s.aborted = s'.aborted u (T)

REPORTCOMMIT(T,v), T * To
Precondition: ,-

T e s'.commited
(T,v) e s'.commit_requested 5
T e s'.reported

Effect:
s.reported = s'.reported u (T) PP

REPORTABORT(T), T * To
Precondition:

T E s'.aborted
T e s'.reported N-

Effect:
s.reported = s'.reported u (T)

REQUESTCOMMIT(T,v), T an access
Precondition: 0

T c s'.created

I
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for all v', (T,v') e s'.commit-requested %
Effect:

s.commit requested = s'.commit-requested o ((T,v))

The next two lemmas are analogous to those previously given for the serial scheduler.

Lemma 15: Let (3 be a finite schedule of the simple database, and let s be a state such that (3 can leave
the simple database in state s. Then the following conditions are true.

1. T is in s.creategequested exactly if T = To or 03 contains a REQUEST_CREATE(T) event.

2. T is in s.created exactly if (3 contains a CREATE(T) event.

3. (T,v) is in s.commitjrequested exactly if 3 contains a REQUESTCOMMfr(T,v) event.

4. T is in s.committed exactly if (3 contains a COMMIT(T) event.

5. T is in s.aborted exactly if 3 contains an ABORT(T) event.

6. T is in s.reported exactly if 3 contains a report event for T.

7. s.committed n s.aborted = 0.

8. s.reported C s.committed u s.aborted.

Lemma 16: Let 3 be a schedule of the simple database. Then all of the following hold:

1. If a CREATE(T) event appears in 3, then a REQUEST-CREATE(T) event precedes it in 3.

2. At most one CREATE(T) event appears in 3 for each transaction T.

3. If a COMMIT(T) event appears in 3, then a REQUEST-COMMIT(T,v) event precedes it in (3 for
some return value v.

4. If an ABORTM event appears in 3, then a REQUEST-CREATEM event precedes it in (3.

5. At most one completion event appears in A for each wansaction.

6. At most one report event appears in (3 for each transaction.

7. If a REPORT-COMMIT(T,v) event appears in 3, then a COMMIT(T) event and a
REQUEST COMMrr(T,v) event precede it in (3.

8. If a REPORT-ABORT(T) event appears in 3, then an ABORT(T) event precedes it in (3.

9. If T is an access and a REQUESTCOMMIT(T,v) event occurs in 3, then a CREATE(T) event
precedes it in (3.

10. If T is an access, then at most one REQUEST-COMMIT event for T occurs in (3.
Proof: By Lemma 15 and the simple database preconditions.

Thus, the simple database embodies those constraints that we would expect any reasonable transaction-processing
system to satisfy. The simple database does not allow CREATEs, ABORTs, or COMMITs without an appropriate
preceding request, does not allow any transaction to have two creation or completion events, and does not report
completion events that never happened. Also, it does not produce responses to accesses that were not invoked, nor
does it produce multiple responses to accesses. On the other hand, the simple database allows almost any ordering
of transactions, allows concurrent execution of sibling transactions, and allows arbitrary responses to accesses. We
do not claim that the simple database produces only serially correct behaviors, rather, we use the simple database to
model features common to more sophisticated systems that do ensure correctness.

Lemma 17: Let T be any transaction name. Then the simple database preserves transaction well-
formedness for T.

Proof: By the definitions and the characterization given in Lemma 16.
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4.2 Simple Systems, Executions, Schedules and Behaviors
A simple system is the composition of a compatible set of automata indexed by the union of the set of non-access

transaction names and the singleton set (SDI (for "simple database"). Associated with each non-access transaction
name T is a transaction automaton A(T) for T, and associated with the name SD is the simple database automaton
for the given system type. When the particular simple system is understood from context, we will often use the
terms simple executions, simple schedules and simple behaviors for the system's executions, schedules and

behaviors, respectively.
Lemma 18: If I is a simple behavior and T is a transaction name, then P3IT is transaction well-formed

forT.
Proof: By Lemma 17 and the definition of transaction automata.

The Serializability Theorem is formulated in terms of simple behaviors; it provides a sufficient condition for a

simple behavior to be serially correct for a particular transaction name T.

5 The Serializability Theorem
In this section, we present our Serializability Theorem, which embodies a fairly general method for proving that a

concurrency control algorithm guarantees serial correctness. This theorem expresses the following intuition: a
behavior of a system is serially correct provided that there is a way to order the transactions so that when the
operations at each object are arranged in the corresponding order, the result is a behavior of the corresponding serial
object. The correctness of many different concurrency control algorithms can be proved using this theorem.

This theorem is the closest analog we have for the classica Serializability Theorem of [BHGI. Both that theorem
and ours hypothesize that there is some ordering on transactions consistent with the behavior at each object. In both
cases, this hypothesis is used to show serial correctness. Our result is somewhat more complicated, however,
because it deals with nesting and aborts. In the next two subsections, we give some additional definitions that are
needed to accomodate these complications.

5.1 Visibility
One difference between our result and the classical Serializability Theorem is that the conclusion of our result is

serial correctness for an arbitrary transaction T, whereas the classical result essentially considers only serial
correctness for To. Thus, it should not be surprising that the hypothesis of our result does not deal with all the
operations at each object, but only with those that are in some sense "visible" to the particular transaction T. In this
subsection, we def-"e a notion of "visibility" of one transaction to another. This notion is a technical one, but one
that is natural and convenient in the formal statements of results and in their proofs. Visibility is defined so that, in
the usual transaction-processing systems, only a transaction T' that is visible to another transaction T can affect the
behavior of T.

A transaction T' can affect another transaction T in several ways. First, if T' is an ancestor of T, then T' can
affect T by passing information down the transaction tree via invocations. Second, a transaction T' that is not an
ancestor of T can affect T through COMMIT actions for T' and all ancestors of T' up to the level of the least
common ancestor with T; information can be propagated from T' up to the least common ancestor via COMMIT
actions, and from there down to T via invocations. Third, a transaction T' that is not an ancestor of T can affect T
by accessing an object that is later accessed by T; in most of the usual transaction-processing algorithms, this is only
allowed to occur if there are intervening COMMIT actions for all ancestors of T' up to the level of the least common
ancestor with T.

Thus, we define "visibility" as follows. Let f3 be any sequence of serial actions. If T and T' are transaction
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names, wesay tha T ise to Tin if eCmisaCMMlT(U acionin f every Una c swr
ancestors(T. Thus. every ancestor of T' up to (but not necessarily including) the least common ancestor of T and T'
has committed in ~

Tob

T

TT

Figure 5: Visibility

Figure 5 depicts two transactions, T and T' neither an ancestor of the other. If die transactions represented by anl
of the circled nodes have committed in some sequence of serial actions, then the definition implies that T' is visible i

to T.

'The following lemm describes elementary properties of "visibility".
Lemma 19: Let 0be asequence of actions, and let Tr and T" be wansaction names.

1. If T is an ancestor of T,then T' is visible to Tin.

2. T' is visible to Tin if andonly ifT' is visible tolca(TT') inn

3. If T" is visible to r in 0and T' is viLbleto T in Pthen T" is visible to Tin.

4. If T' is live in Anmd T' is visible to Tin 0, then Tis adecendant oT r.

5. IfT' is an ohindp wrivisil TinnPhe n Tauian plin.

We use the notion of *visbility to pick out of a sequence of actioiu, a subsequence consisting of the actions
corresponding to transactions that ar visible to a given tiansaction T. More precisely, if 0 is anmy sequence of actions
and T is a transaction name, then vwuiWeP3) denows the subsequence of 0 consisting of serial actions xt with
hightransaction~x) visible to T in 0. Note dha every action occurring in visible(PT) is a serial action, even if P itself
contains other actions. The following obvious lemma says that the "visible" operator on sequences picks out either
all or none of the samtiuthaving a particular transaction.

Lem=a 20: Let P be a sequence of actions, and let T and T' be transaction names. Then visible(I,)IT'
is equal to AMT' if Tr is visible to T in P, and is equal to dhe empty sequence otherwise.

5.2 Event and Transaction Orders e
The hypothesis of the thearm refers to rearranging the operations at each object, Accoding to a given order on

transactions. The definitio required to describe the appropriate kind of ordering to use for this purpose are
provided in this subsection.
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5.2.1 Affects Order
We first define a partial order "affects(ft)" on the events of a sequence 1 of serial actions. This will be used to

describe basic dependencies between events in a simple behavior;, any appropriate ordering will be required to be

consistent with these dependencies. We define the affects relation by fust defining a subrelation that we call the

"directly-affects" relation and then taking the transitive closure. For a sequence 13 of serial actions, and events 0 and

x in 3, we say that directly affects x in 3 (and that (Oi) E directly-affects(3)) if at least one of the following is

true.

* transaction(o) = transaction(n) and 0 precedes it in 3,9

* 0 = REQUESTCREATET and n = CREATE(

* = REQUESTCOMMIT(Tv) and x = COMMIT(T)

* 0 = REQUESTCREATE(T) and x = ABORT(T)

* 0 = COMMIT(T) and x = REPORTCOMMIT(T,v)

a 0 = ABORT(T) and 7t = REPORTABORT(T)

If P is a simple behavior, and (0,t) u directly-affects(o), then it is easy to see that 0 precedes xt in P. For a

sequence 13 of serial events, define the relation affects(3) to be the transitive closure of the relation
directly-affects(p3). If the pair (0,x) is in the relation affects(p3), we also say that 0 affects x in 03. The following is
immediate.

Lemma 21: Let 13 be a simple behavior. Then affects) is an irreflexive partial order on the events in
1.10

The conditions listed in the definition of "directly-affects" should seem like a reasonable collection of
dependencies among the events in a simple behavior. Here we try to give some technical justification for these
conditions. In the proof of the theorem, we will attempt to extract serial behaviors from a given simple behavior.
The transaction orderings used to help in this construction will be constrained to be consistent with "affects"; this

will mean that the sequences we construct will be closed under "affects" and that the orders of events in these

sequences are consistent with "affects". Thus, if 13 is a simple behavior and (0,X) E directly-affects(3), all the serial
behaviors we construct that contain ix will also contain 0, and O will precede x in each such behavior.

The first case of the "directly-affects" definition is used because we are not assuming special knowledge of
transaction behavior, if we included x and not 0 in our candidate serial behavior, we would have no way of proving

that the result included correct behaviors of the transaction automata. The remaining cases naturally parallel the
preconditions of the serial scheduler, in each case, the preconditions of i as an action of the serial scheduler include
a test for a previous occurrence of 0, so a sequence of actions with i not preceded by 0 could not possibly be a serial

behavior.

As before, we extend the "affects" definition to sequences 1 of arbitrary actions by saying that 0 affects n in 13
exactly ifO affects x in serial().

.N.

9This includes aoesses as well as nan-accesses.

10An irrefleive partial order is a binary relation that is irveflexive, antisymmnetric and transitive.
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S.2.2 Sibling Orders
The type of transaction ordering needed for our theorem is more complicated than that used in the classical

theory, because of the nesting involved here. Instead of just arbitrary total orderings on transactions, we will use
orderings that only relate siblings in the transaction nesting tree. We call such an ordering a "sibling order".
Interesting examples of sibling orders are the order of completion of transactions or an order determined by assigned
timestamps.

Let SIB be the (irreflexive) sibling relation among transaction names, for a particular system type; thus, (TT') c-
SIB if and only if T * T' and parent(T) = parent(T'). If R Q SIB is an irreflexive partial order then we call R a
sibling order. Sibling orders are the analog for nested transaction systems of serialization orders in single-level
transaction systems. Note that sibling orders are not necessarily total, in general; totality is not always appropriate
for our results.

A sibling order R can be extended in two natural ways. First, R., is the extension of R to descendants of
siblings, i.e., the binary relation on transaction names containing (T,T') exactly when there exist transaction names
U and U' such that T and T' are descendants of U and U' respectively, and (UU') e R. This order echoes the
manner in which the serial scheduler runs transactions when it runs siblings with no concurrency, in the order
specified by R. Second, if 15 is any sequence of actions, then Reen(3) is the extension of R to serial events in 1, i.e.,
the binary relation on events in 10 containing (Ox) exactly when 4 and it are distinct serial events in 13 with
lowtransactions T and T' respectively, where (TT') e Rt.. It is easy to see that Rt1 , is an irreflexive partial
order, and for any sequence 15 of actions, Revn,(15) is an irreflexive partial order.

The concept of a "suitable sibling order" describes two basic conditions that will be required of the sibling orders
to be used in our theorem. The first condition is a technical one asserting that R orders sufficiently many siblings,
while the second condition asserts that R does not contradict the dependencies described by the affects relation. Let
J3 be a sequence of actions and T a transaction name. A sibling order R is suitable for 03 and T if the following
conditions are met. 'p

1. R orders all pairs of siblings T' and T" that are lowtransactions of actions in visible(15,T).

2. Revere(1) and affectso) are consistent partial orders on the events in visible(15,T). 11

5.3 The Serializability Theorem"4
We now present the main result. It says that a simple behavior 1 is serially correct for a non-orphan transaction

name T provided that there is a suitable sibling order R for which a certain "view condition" holds for each object
name X. The view condition says that the portion of 0 occurring at X that is visible to T, reordered according to R, is
a behavior of the serial object S(X). In order to make all of this precise, suppose 13 is a finite simple behavior, T a
transaction name, R a sibling order that is suitable for 15 and T, and X an object name. Let 4 be the sequence
consisting of those operations occurring in 13 whose transaction components are accesses to X and that are visible to
T in 1, ordered according to Rmn, on the transaction components. (The first condition in the definition of suitability
implies that this ordering is uniquely determined.) Define view%1,TRX) to be perform( ).

Thus, view(1,TR,X) represents the portion of the behavior 13 occurring at X that is visible to T, reordered
according to R. Stated in other words, this definition extracts from 13 exactly the REQUESTCOMMIT actions for
accesses to X that are visible to T; it then reorders those REQUEST-COMMIT actions according to R, and then
inserts an appropriate CREATE action just prior to each REQUESTCOMMIT action. The theorem uses a

I

"Two hinary relations R and S am consistent if their union can be extended to an irreflexive partial order (or in other words, if their union has

no cycles).

N"
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hypothesis that each view(P,T.R,X) is a behavior of the serial object S(X) to conclude that JI is serially correct for T.

Theorem 22: (Serializability Theorem) Let P be a finite simple behavior, T a transaction name such
that T is not an orphan in 0, and R a sibling order suitable for 0 and T. Suppose that for each object name
X, view(3,TR,X) E finbehs(S(X)). Then 0 is serially correct for T.

Proof: Given P, T and R, the needed serial behavior is constructed explicitly. The construction is done
in several steps. First, visible(fT), the portion of J3 visible to T, is extracted from 0. This sequence is
then reordered according to R and affects(p). (There may be many ways of doing this.) The reordered
sequence is then truncated at an appropriate place, just after the last action involving T or any of its
descendants. The resulting sequence y is shown to be a serial behavior by showing separately that its
projections are behaviors of the transaction automata, of the serial object automata, and of the serial
scheduler, and then applying Proposition 4.

If T' is a nonaccess transaction name, Proposition 1 implies that Orr' is a behavior of A(T').
Proposition 20 and the fact that Reea(O) is consistent with affects(p) ensure that )fl' is a prefix of IT'
and so is a behavior of A(T'). Thus, the projection of y on each of the transaction automata is a behavior
of that automaton.

For each object name X, unwinding the definitions shows that *OX is a prefix of view(P,TR,X). The
"view condition" hypothesis of the theorem, that view(O,T,R,X) E finbehs(S(X)), implies that -OX is a
behavior of S(X). Thus, the projection of y on each of the serial object automata is a behavior of that
automaton.

Finally, an explicit argument by induction on the length of y shows that y is a behavior of the serial p
scheduler automaton. Consistency with affects(0) is used to show that certain events are included in -r
this implies that the serial scheduler preconditions involving occurrence of certain events are satisfied.
The properties of the "visible" operator are used to show that certain events, e.g., those involving live
transactions neither ancestors nor descendants of T, are not included in y, this implies that the serial
scheduler preconditions involving nonoccurrence of certain actions are satisfied.

The theorem has a straightforward corollary that outlines a strategy for showing that a particular system satisfies

the correctness condition in which we are mainly interested, i.e., that all its finite behaviors are serially correct for

TO.
Corollary 23: Let (Biji I be a strongly compatible set of automata and let B = IliI i1i. Suppose that

the name To is in the index set I, and that the automaton A(T0) is associated with To in B. Suppose that for
every finite behavior 03 of B, the following conditions hold.

1. serial(3) is a simple behavior.

2. There exists a sibling order R suitable for serial(O) and T0, such that for each object name X,

view(serial(O3),T 0 ,R,X) E fmbehs(S(X)).

Then every finite behavior of B is serially correct for T0 .

6 Applications of the Serializability Theorem
We use this theorem elsewhere in our work to reason about the correctness of a wide variety of algorithms for

implementing atomic transactions. In particular, we carry out correctness proofs for several algorithms that use

locking and others that use timestamps. •

The locking algorithm of Moss [Moss] is designed for data objects that are accessible only by read and write

operations. We have developed a similar algorithm, in [FLMW2], that accomodates arbitrary data types. These

algorithms involve simultaneous locking at different levels of the transaction nesting tree. A transaction is only

permitted to access a data object if it has a suitable lock on that object. Sometime after a transaction commits, its

locks are passed up to its parent and associated modifications to the data are made available to the parent and its

other descendants. On the other hand, when a transaction aborts, its locks are released and its modifications to the

-- ---. --- - -
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data are discarded. The decision about whether to permit an access transaction to obtain a lock is based on whether
any locks for "conflicting" operations are held by transactions that are not ancestors of the given access.

Using Corollary 23 above, we can prove that all the finite behaviors of a system B are serially correct for To if B
uses these algorithms. Although the locking algorithms include more actions than the simple system, it is not hard
to see that serial(3) is a simple behavior, for every finite behavior 03 of B. The sibling order R used in the proof is the
"completion order", i.e., the order in which sibling transactions commit and abort. Proving correctness of this
algorithm using the Serializability Theorem highlights the key reason why locking algorithms work: roughly
speaking, the condition that view(O,T 0,RX) E finbehs(S(X)) says that the processing at any object is "consistent"
with the transaction completion order. The "consistency" mentioned here means that reordering the appropriate,
"visible" portion of the processing at each object in completion order yields a correct behavior for the corresponding
serial object automaton. We can also use the Serializability Theorem to prove the stronger statement that the
locking algorithms mentioned above are serially correct for all non-orphan transactions.

Our correctness proo.' for these algorithms have an interesting structure. Namely, we describe each algorithm as
the composition of a component automaton for each object plus one global "controller" automaton that simply
manages communication among the other automata. A local condition called "dynamic atomicity" is defined; this
condition essentially says that the object satisfies the view condition using the completion order. The Serializability
Theorem implies that if all the objects are dynamic atomic, the system guarantees serial correctness for all non-
orphan transaction names. The rest of the proof involves showing that the objects that model the given locking
algorithms are dynamic atomic.

This proof structure allows us to obtain much stronger results than just the correctness of the given algorithms. As
long as each object is dynamic atomic, the whole system will guarantee that any finite behavior is serially correct for
all non-orphan transaction names. Thus, we are free to use an arbitrary implementation for each object, independent
of the choice of implementation for each other object, as long as dynamic atomicity is satisfied. For example, a
simple algorithm such as Moss' can be used for most objects, while a more sophisticated algorithm permitting extra
concurrency by using type-specific information can be used for objects that are "hot spots" (that is, very frequently
accessed.) The idea of a local condition that guarantees serial correctness was introduced by Weihl [Weihl] for
systems without transaction nesting.

The timestamp algorithm of Reed [Recd] is designed for data objects that are accessible only by read and write
operations. We have developed a similar algorithm, in [AFLMWI, that accomodates arbitrary data types. (This
work generalizes work of Herlihy [Herlihyl giving a timestamp algorithm for single-level transactions using
arbitrary data types.) These algorithms both involve assignment of ranges of timestamp values to transactions in
such a way that the interval of a child transaction is included in the interval of its parent, and the intervals of siblings
are disjoint. Responses to accesses are determined from previous accesses with earlier timestamps.

We again analyze these algorithms using the Serializability Theorem and its Corollary. This time, the sibling
order used is the timestamp order. Now the condition that viewt3,T0 ,R,X) e finbehs(S(X)) says that the processing
of accesses to X is "consistent" with the timestamp order, in that reordering the processing in timestamp order yields
a correct behavior for the corresponding serial object automaton. The Corollary then implies that all finite behaviors
are serially correct for T0 , and the Serializability Theorem implies that the timestamp algorithms are serially correct
for all non-orphan transaction names. Once again, each algorithm is described as the composition of object
automata and a controller. This time, a local condition called "static atomicity" is used, saying that an object satisfies
the view condition using the timestamp order. As long as each object is static atomic, the whole system is serially
correct for non-orphan transactions. We show that both Reed's algorithm and our version of Herlihy's algorithm
ensure static atomicity. Again, we have the flexibility to implement objects independently as long as static
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atomicity is guaranteed.

Objects can be proved to be dynamic atomic or static atomic using standard assertional proof techniques and
connections between the object's state and history. It is also possible to prove that some objects are dynamic atomic
or static atomic by showing that they implement other objects of the same kind. Possibilities maps and Proposition
6 can be used to show this. This strategy is especially useful in cases where the object keeps information in a
compact form, whereas the required local property is easy to prove for a less compact variant of the algorithm. We
refer the interested reader to [FLMW2] and [AFLMW] for more details.

7 Conclusions
In this paper, we have presented correctness conditions for atomic transaction systems. These conditions are

stated at the user interface to the system, which is the interface of primary interest. The fact that the conditions are
stated at this interface makes them quite general; they can be used to state appropriate correctness conditions for a
wide variety of different algorithms. We have also described one general theorem, the Serializability Theorem, S
which is useful for proving correctness of many interesting and apparently dissimilar algorithms.

The Serializability Theorem is not the only tool we use for our correctness proofs. There are several other
techniques that we use for decomposing proofs of transaction-processing algorithms. For example, in [GL], we
provide proofs for replicated data algorithms based on the quorum consensus technique of Gifford [Gifford]. We
consider replication management algorithms in combination with concurrency control and recovery algorithms. Our
presentation separates the concerns very cleanly: the algorithm is divided into modules that handle replication and
modules that handle the concurrency control and recovery. Correctness conditions for the two separate algorithms
are combined to yield correctness for the complete algorithm. In particular, all that is required of the concurrency
control and recovery algorithms is that they guarantee serial correctness for non-orphan transactions (with respect to S
the individual copies of the data objects); thus, there is considerable flexibility in the choice of concurrency control
and recovery algorithms. We remark that transaction nesting provides a particularly good way to organize this
decomposition: the replication part of the algorithm is formally described in terms of new copy-management
subtransactions that are called by the user-level transactions in place of the original user-level accesses to objects. :

We expect that our model in general, and the Serializability Theorem in particular, will prove quite useful for
reasoning about many more algorithms than those that we have already considered. We are also particularly
interested in understanding how to reason about multi-level locking algorithms such as that considered in [BBG],
and in understanding complicated algorithms that are used for concurrency control and recovery in an environment
having volatile memory which is lost during a crash. Understanding these ideas in our model is work remaining to
be done. S

Finally, we remark that our Serializability Theorem still seems somewhat more complicated than the classical
theorem, even taking the generalizations into account. The classical theorem was stated in simple combinatorial
terms, while our theorem involves a more complicated fine-grained treatment of individual actions. We wonder if it
is possible to combine the advantages of the two approaches: perhaps there is a simple combinatorial condition that
takes suitable account of nesting and failures, and that implies the natural and general correctness conditions
described in this paper.

. .. . . ... .. ........ ......
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